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Abstract: Forecasting of monthly streamflow for the White Nile River at Malakal station is a crucial aspect for different 

water resources projects in both countries Sudan and South Sudan. For instance, the operation of Jabal al Awliya dam in central 

Sudan entirely depends upon the measured flow of this station. In this paper, linear stochastic models well-known as seasonal 

autoregressive integrated moving average [SARIMA] models were used to model and forecast monthly flow of White Nile 

River in Malakal station, South Sudan. For the analysis, monthly flow data for the years running from 1970 up to 2013 were 

used. A scrutiny of the original series proves a yearly seasonal pattern. The results of Phillips-Perron (PP) test and Augmented 

Dickey Fuller (ADF) test on the streamflow series show that this series is not stationary. This non-stationarity was removed 

using first order seasonal differencing (i.e. twelve-monthly) preceding to the development of the model. The SARIMA 

(1,0,1)×(0,1,1)12 model was selected as the most suitable for modeling and forecasting monthly flow for White Nile River. It 

was found that the model was proper to forecast three successive years of monthly flow, which may help the experts to institute 

priorities for various water resources management in both countries. 

Keywords: White Nile River, South Sudan, Malakal, Stochastic Models, SARIMA 

 

1. Introduction 

The Nile River is the longest river in the earth planet, 

nearly 6700 �� long, with total catchment area of about 3.2 

million ��� . The Nile water is shared between eleven 

riparian countries which together populate more than 487 

million peoples [1]. There are three major tributaries to the 

Nile River, which are the Blue Nile, the White Nile, and the 

Atbara River. The entire flow of the Nile River is about 84.1 

billion m
3
 at Aswan dam, Egypt. The Blue Nile and the 

Atbara River contributes about 61 billion m
3
, or 72% of the 

overall flow. The remaining 28% is derived from the White 

Nile River. The contribution of White Nile is very essential 

as it gives a continuous flow throughout the year [2]. The 

White Nile originates from the Equatorial Lakes region in 

central part of Africa. Its sub basin involves catchment areas 

in Burundi, Kenya, Republic of Congo, Republic of Sudan, 

Rwanda, South Sudan, and Uganda. The White Nile enters 

South Sudan at Nimule city and goes through Juba city, the 

capital, to spread out in large swamps called the Sudd region. 

The swamps are considered as one of the largest wetland 

areas in the world, covering an area of more than 30000 km
2
. 

At this area, the White Nile branches into many smaller 

rivers and is fed afterward by Bahr el Ghazal River. A large 

amount of the White Nile water evaporates in the swamps 

area. The Jonglei canal project plans to shorten and direct the 

flow of the water through the Sudd areas. When completed, 

the canal is designed to divert about 20 million m
3
 of water 

per day past the swamps, which will save about 4.7 billion m
3
 

per year of water evaporation in the swamps [3]. 

At Malakal city, the capital of Upper Nile State, the White 

Nile is merged by its last tributary, the Sobat River. The 

section of the White Nile River situated between Nimule and 

Malakal is named as Bahr el-Jebel. Then the White Nile 

continues north to Khartoum city crossing the Jabal al Awliya 

dam. The dam was built in 1937 to control the level of the 

Nile River downstream. It is one of the largest reservoirs in 

Sudan. Jabal al Awliya dam serves the irrigation needs of 

many projects in central Sudan. The White Nile joins the 

Blue Nile at Khartoum city to form the Nile River. Later, 

River Atbara, which is the last stream flowing into the Nile 

River, enters the Nile at Atbara city nearly 320 km north of 

Khartoum. Finally, the Nile travels north through the Nubian 

Desert and Egypt to reach its last destination in the 
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Mediterranean Sea. 

Time series forecasting of hydrologic variables, such as 

streamflow, is an important phase in analysis and planning of 

different water resources systems. For instance, monthly 

streamflow forecasting is useful in reservoir operations, 

irrigation management and different aspects of water 

resources management and planning. 

Forecasting streamflow values accurately is significant for 

different water resources studies [4, 5]. Short-term flow 

forecasting is essential for flood protection works; medium-

term forecasting is useful for reservoir operation; long-term 

forecasting is valuable for water resources management and 

planning [6-11]. During the last decades, a large number of 

forecasting models have been used for streamflow 

forecasting such as rainfall-runoff models, low flow 

recession models, regression models, time series models and 

artificial neural network models [6, 12, 13]. The time series 

models, including the autoregressive integrated moving 

average (ARIMA) models and seasonal autoregressive 

integrated moving average (SARIMA) models, have been 

widely used in streamflow forecasting [14-21]. Rabenja et al. 

[18] forecasted both monthly rainfall and the discharge of the 

Namorona River in Madagascar using ARIMA and SARIMA 

models; they concluded that the SARIMA model is the more 

adapted for the forecasting of the data of the rainfall and the 

monthly discharge. Valipour [19] modeled the long-term 

runoff in the United States adopting the stochastic SARIMA 

and ARIMA models. He found that the accuracy of the 

SARIMA model is better than that of the ARIMA model. 

This study applied the seasonal autoregressive integrated 

moving average (SARIMA) models to monthly streamflow 

forecasting for the White Nile River at Malakal station, South 

Sudan. 

2. Materials and Methods 

2.1. Site Description 

The White Nile River has been measured at Malakal, 

South Sudan, since the year 1905. Malakal city lies on the 

eastern bank of the White Nile, just downstream of its 

meeting with the Sobat River. The city is located in the 

northeast part of South Sudan, near to the borders with the 

Republic of Sudan. 

Malakal station is situated at 9.33° N latitude and 31.39° E 

longitude with altitude 387 meters above sea level, Figure 1. 

The averages of annual rainfall and temperature for the 

region are 782 mm and 28.1°C respectively. In addition, the 

annual average number of rainy days is 175 days and the 

average annual potential evapotranspiration is nearly        

2021 mm [22]. 

Malakal station represents the contribution of White Nile, 

Sobat River, and Bahr el Ghazal basin. The flows 

measurements at Malakal are precise because the numbers of 

gauging have been sufficient and the rating curve is very 

good [23]. 

 

Figure 1. Malakal city on the White Nile River – South Sudan. 

Source: (http://aemstatic-

ww1.azureedge.net/content/dam/hydroworld/online-

articles/2015/April/South%20Sudan.gif) 

2.2. Data 

Streamflow forecasting is crucial aspect for water 

resources management and flood protection. Monthly 

streamflow forecasting is helpful for reservoir operation. For 

example, the operation of Jabal al Awliya dam in central 

Sudan is entirely depending on the measured flow of Malakal 

station. 

Daily and mean monthly streamflow data for the White 

Nile River at Malakal gauging station, South Sudan, were 

obtained from the Ministry of Water Resources and 

Electricity, covering the period 1970–2013. The mean 

monthly data is presented graphically in Figure 2. 

According to the records, from 1970 to 2013, the highest 

amount of flow at Malakal was 131.74 M m
3
/day recorded in 

November 1970; and the lowest amount of flow was 

recorded in April 2010 at 45.35 M m
3
/day. The average daily 

annual flow for the river is 84.68 M m
3
/day. 

The number of observations for the specification of the 

SARIMA models must be at least 50 and preferably 100 for 

efficient estimation [24]. For the model selection, the chosen 

part of the data is ranged from January 2000 to December 

2010 and the remaining data from 2011 to 2013 was 

considered in forecasting estimations of the model. 
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Figure 2. Mean monthly flow data for White Nile River at Malakal station 

[1970-2013] in M m3 per month. 

2.3. Modeling by SARIMA Methods 

A time series is said to be stationary if it has constant mean 

and variance. A stationary time series can be modeled in 

numerous ways: an autoregressive (AR) process, a moving 

average (MA) process, or an autoregressive and moving 

average (ARMA) process. Although, an ARMA model deal 

with stationary data, ARMA models can be applied to non-

stationary series by permitting differencing of data series. 

These models are called autoregressive integrated moving 

average (ARIMA) models. A time series may have non-

seasonal and seasonal characteristics. 

2.3.1. Non-seasonal ARIMA Model 

The general structure of non-seasonal ARIMA model is 

AR to order p and MA to order q and operates on dth 

difference of the time series �� ; therefore a model of the 

ARIMA family is classified by three parameters (p, d, q) that 

can have zero or positive integral values. The general non-

seasonal ARIMA model may be written as 

�	
��
�� � �	
���                              (1) 

Where �	
� and �	
� are polynomials of order p and q, 

respectively. B is the backshift operator defined as      


��� � ����, � is the difference operator (� � 1 � 
) and 

��  is assumed to be a Gaussian white noise process with 

mean zero and variance ��. 

�	
� � 	1 � ��
 � ��
� ����
��                (2) 

and 

�	
� � �1 � ��
 � ��
� ����
��                  (3) 

2.3.2. Seasonal ARIMA Model 

Frequently time series have a seasonal part that repeats 

every s observations. For monthly observations s=12 (12 in 1 

year), for quarterly observations s=4 (4 in 1 year). Box et al. 

[24] has generalized the ARIMA model to deal with 

seasonality, and define a general multiplicative seasonal 

ARIMA model, which are generally known as SARIMA 

models. In short form the SARIMA model expressed as 

ARIMA (p, d, q) x (P, D, Q) s, which is written as 

��	
���	
���
�� 	��� � ��	
�!"	
����          (4) 

Where p is the order of non-seasonal autoregression, d the 

number of regular differencing, q the order of non-seasonal 

MA, P the order of seasonal autoregression, D the number of 

seasonal differencing, Q the order of seasonal MA, s is the 

length of season, Φ$ and Θ& are the seasonal polynomials of 

order P and Q, respectively. 

SARIMA models development consists of the next three 

stages: model identification, parameters estimation and 

diagnostic checking. At the first stage, a preliminary 

SARIMA model is proposed from the analysis of the sample 

autocorrelation function (ACF) and partial autocorrelation 

function (PACF), allowing us to determine the parameters d, 

D, p, q, P and Q. The model that gives the minimum Akaike 

Information Criterion (AIC) [25] and Hannan-Quinn 

Criterion (HQ) is chosen as best model [26, 27]. After that, 

the non-seasonal and seasonal AR and MA parameters are 

estimated at the second stage. Finally, the diagnostic 

checking stage verifies whether the suggested model is 

adequate or not. If the model is considered adequate, it can 

be applied for forecasting future values; if not; the procedure 

is repeated until an adequate model is found. The flow chart 

of SARIMA model was drawn in Figure 3. 

 

Figure 3. Flow chart of SARIMA model. 

2.4. Tests of Stationarity 

The first part in the identification phase is to examine the 

stationarity of the time series. This is done with the 

Augmented Dickey-Fuller (ADF) test and the Phillips-Perron 

(PP) test as explained in this section. There are other tests 

like the Kwiatkowski-Phillips-Schmidt-Shin test [28] and 

Zivot and Andrews test [29]. 

2.4.1. The Augmented Dickey-Fuller (ADF) Test 

The Dickey-Fuller (DF) test is one of the most popular 

tests for unit root. The model is written as: 

∆y) � αy)�� + x)̀δ + /)                            (5) 
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Where x)̀ are optional exogenous regressors which may 

consist of constant, or a constant and trend, α  and δ  are 

parameters to be estimated, and the ϵ)  are assumed to be 

white noise [30]. 

The model described above is valid only if the series is an 

AR (1) process. If the series is correlated at higher order lags, 

the assumption of white noise disturbances ϵ) is violated. 

When a series is correlated at higher lags, the appropriate test 

is the Augmented Dickey-Fuller (ADF) which controls for 

higher-order correlation. The ADF test it is based on the 

following model 

∆1� = 2 + 34 + 	5 − 1�1��� + 6�Δ1��� + ⋯ +6���Δ1���8� + 9�                          (6) 

Where 2 is a constant, 3 the coefficient of a simple time 

trend, 5 is the parameter of interest, ∆ is the first difference 

operator, 6: are parameters and p the lag order of the 

autoregressive process. 

2.4.2. The Phillips-Perron (PP) Test 

Phillips et al. [31] develop an alternative nonparametric 

method for checking stationarity. The PP method estimates 

the DF test equation ,  and modifies the t-ratio of the                2  coefficient so that serial correlation does not affect the 

asymptotic distribution of the test statistic [30]. The test is 

based on the statistic: 

t̃α = tα =γ>?>@� �⁄ − B�C>�γ>�	DE	αF���?>G H⁄  D                       (7) 

Where 2F  is the estimate, and 4I the t-ratio of 2, JK	2F� is 

coefficient standard error, and s is the standard error of the 

test regression. In addition, LM is a consistent estimate of the 

error variance in equation 5. The remaining term, NM, is an 

estimator of the residual spectrum at frequency zero. The 

asymptotic distribution of the PP modified t-ratio is the same 

as that of the ADF test [30]. 

2.5. Statistical Software 

The statistical and econometric software Eviews-9 was 

used for all the analytical work. It is based on the least 

squares optimization criterion. 

2.6. Forecasting validation 

The basic statistics which have been used in the evaluation 

of the model performance are: Mean Absolute Error 	MAE�, 

Root Mean Squared Error  	RMSE� , Coefficient of 

Determination 	R�� , Nash-Suttcliffe Efficiency 	NSE� , and 

Theil Inequality Coefficient 	TIC�. 

1. Mean Absolute Error: 

XYZ = �[ ∑ | :̂ − _:|[:`�                           (8) 

2. Root Mean Squared Error: 

aXbZ = c�[ ∑ 	 :̂ − _:��[:`�                        (9) 

3. Coefficient of Determination: 

a� = d ∑ 	ef�eg�	hf�hg�ifjGc∑ 	ef�eg�HifjG ∑ 	hf�hg�HifjG
k

�
                    (10) 

4. Nash–Sutcliffe efficiency: 

lbZ = 1 − ∑ 	ef�hf�HifjG∑ 	ef�eg�HifjG                          (11) 

5. Theil Inequality Coefficient: 

TIC = cGi ∑ 	ef�hf�HifjG
cGi ∑ 	ef�HifjG 8cGi ∑ 	hf�HifjG

                    (12) 

Where, :̂ are the n observed flows, _: are the n forecasted 

flows, ĝ  is the average of the observed series, _g  is the 

average of the forecasted series. 

The mean absolute error (MAE) has been used as a 

standard tool to measure model performance in hydrological 

and climatological research studies [32]. The root mean 

square error (RMSE) is another useful measure widely used 

in model evaluations [33]. Chai et al. [34] demonstrate that 

the RMSE is more suitable to represent model performance 

than the MAE when the error distribution is expected to be 

Gaussian. The coefficient of determination (R
2
) shows the 

strength of fit between observed and forecasted data [35, 36]. 

It varies from 0 to 1, with higher values indicating better 

agreement between the model and the observations. The 

coefficient of efficiency (NSE) introduced by Nash and 

Sutcliffe has been widely used to evaluate the performance of 

hydrologic models [37, 38]. In fact, NSE is the ratio of the 

mean square error, to the variance in the observed data, 

subtracted from unity [39]. The range of NSE lies between 1 

and −∞. An efficiency of 1 (NSE=1) means a perfect match 

of model results and observed data. Theil Inequality 

Coefficient (TIC) is another statistical measure of forecast 

accuracy [40]. The range of TIC lies between 0 and 1. In 

practice, values of 0.55 or less are very good [41]. If the 

coefficient equal zero, it can be said that there is a perfect fit 

between the observed and the forecasted data. 

3. Results and Discussion 

3.1. Identification of the Model 

The graphical presentation of the monthly streamflow in 

Figure 2 shows that there is a seasonal pattern in the series 

and the series is non-stationary. Most of the hydrological 

time series are non-stationary time series. Mohamed et al. [20, 

42] observed that monthly flow time series in most of 

Sudanese gauging station as non-stationary time series. 

The diagram of sample autocorrelation function (ACF) and 

partial autocorrelation function (PACF) proves that the series 

is non-stationary, Figure 4. Both the Phillips-Perron (PP) test 

and the Augmented Dickey-Fuller (ADF) test confirmed the 

non-stationarity of the monthly data, as shown in Table 1. 

From Figure 4, it has been remarked that the data is 

seasonal of period 12 months and must therefore be 

differenced by one seasonal degree of differencing to attain 
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stationary (D=1). The PP and ADF tests were done again on 

the seasonally differenced data. The results of the tests 

adjudge that the differenced series is stationary, Table 2. As 

the time series became stationary, no non-seasonal 

differencing was used (d=0). 

Figure 5 shows the ACF and PACF plots of the data after 

the taken of the seasonal difference. It emerges that most of 

the seasonality is vanished and the data became stable. The 

autocorrelation structure in Figure 5 proposes many models. 

The proposed models, the Akaike Information Criterion 

(AIC), the Hannan-Quinn Criterion (HQ) and the coefficient 

of determination (R
2
) values are shown in Table 3. The model 

that gives the minimum value of AIC and HQ with a 

maximum value of R
2
 is selected as best model. 

Clearly, model SARIMA (1,0,1)×(0,1,1)12 has the smallest 

values of AIC, HQ and the maximum value of R
2
 then one 

would provisionally have a model SARIMA (1,0,1)×(0,1,1)12. 

 

Figure 4. ACF and PACF plots for White Nile River monthly flow. 

Table 1. Unit root test of the monthly flow data. 

Test Static P-value 

Augmented Dickey-Fuller 0.056 0.699 

Phillips-Perron -1.137 0.232 

Table 2. Unit root test of the differenced data. 

Test Static P-value 

Augmented Dickey-Fuller -3.725 0.000 

Phillips-Perron -3.678 0.000 

 

Figure 5. ACF and PACF plots after one seasonal difference. 

3.2. Estimation of the Parameter 

The second part of the Box-Jenkins methodology for 

SARIMA modeling is the parameter estimation. After the 

selection of the best model using the AIC, HQ and R
2
 criteria, 

estimation of the parameters was conducted. The value of the 

parameters, associated standard errors, t-statistic and p-values 

are accessible in Table 4. The results confirmed that the 

parameters are significant as their p-value < 0.050. All the 

absolute values of the inverted AR and MA roots are smaller 

than one; consequently the model is stationary and invertible. 

3.3. Diagnostic Check 

Once the suitable model is selected, the Box-Jenkins 

methodology requires examining the residuals of the model 

to prove that the model is adequate one for the time series. 

The residuals should behave like Gaussian white noise, 

which is appearing random, homoscedastic and normal [24]. 

Different verification tests were applied on the residual series. 

These tests are discussed briefly in the next paragraphs. 

3.3.1. ACF and PACF of Residuals 

The residuals autocorrelation function (RACF) and 

residuals partial autocorrelation function (RPACF) are useful 

tools to assess the presence of correlation between the 

residuals. The RACF and RPACF of the model SARIMA 

(1,0,1)×(0,1,1)12 are shown in Figure 6. All values of the 

RACF and RPACF lie within the confidence limits. The 

figure noticeably supports the absence of significant 
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correlation between the residuals. 

Table 3. Comparison of the proposed Model (Malakal Station). 

Variable Model AIC HQ R2 

Mean Monthly Flow 

SARIMA (1,0,1)×(0,1,1)12 6.2053 6.2432 0.828 

SARIMA (1,0,0)×(0,1,1)12 6.3013 6.3203 0.805 

SARIMA (1,0,1)×(1,1,1)12 6.5413 6.6021 0.787 

SARIMA (1,0,1)×(1,1,0)12 6.5647 6.6052 0.774 

Table 4. Estimation of the SARIMA (1,0,1)×(0,1,1)12 model. 

Variable Coefficient Std. Error t-Statistic Prob. 

AR (1) 0.705310 0.076140 9.263267 0.0000 

MA (1) 0.457969 0.095059 4.817725 0.0000 

MA (12) 0.877- 046 0.040991 21.39- 617 0.0000 

MA (13) 0.41890 - 6 0.088002 4.760- 182 0.0000 

R-squared 0.828983 Mean dependant var 0.502- 1 

Adjusted R-squared 0.824521 S. D. dependant var 12.645 

S. E. of regression 5.297306 Akaike info criterion 6.2053 

Sum squared resid. 3227.067 Schwarz criterion 6.2987 

Log likelihood -365.2159 Hannan-Quinn criterion 6.2432 

Durbin-Watson stat 2.005604 
   

Inverted AR roots 0.71 
   

Inverted MA roots 0.99 .86+.49 i .86 -.49 i .50-.86 i 

 
.50+.86 i .00-.99 i .00+.99 i 0.48-  

 
-.49+.86 i -.49-.86 i -.85+.50 i -.85-.50 i 

 
0.99-  

   
 

 

Figure 6. RACF and RPACF plots for SARIMA (1,0,1)×(0,1,1)12. 

3.3.2. The Ljung-Box Test 

The Ljung-Box test is used for checking independence 

(randomness) of residual. From Figure 6, the goodness of 

fit values for the autocorrelations of residuals from the 

model up to lag 30 was greater than 0.050. The result 

proves the acceptance of the null hypothesis of model 

adequacy at the 5% significance level and the set of 

autocorrelations of residuals was considered white noise. 

3.3.3. The Durbin-Watson Statistic 

The Durbin-Watson (DW) statistic measures the serial 

correlation in the residuals. If the residuals are not correlated, 

the Durbin-Watson statistic will be 2 [43, 44]. The Durbin-

Watson test statistic value in Table 4 is found to be 2.0056, 

which does not deviate from 2 by more than 0.0056. Hence, 

there is no serial correlation between the residuals. 

3.3.4. The Breusch-Godfrey Test 

The Breusch-Godfrey test is an alternative to the Durbin-

Watson test [45]. The test belongs to the class of asymptotic 

(large sample) tests known as Lagrange multiplier (LM) tests. 

The Serial Correlation LM test in Table 5 has the p-value > 

0.050. Therefore, it accepts the hypothesis of no serial 

correlation in the residuals. 

Table 5. The Breusch-Godfrey serial correlation LM test. 

F-statistic 2.216 Prop. F (2,113) 0.114 

Obs*R-squared 4.079 Prop. Chi-square (2) 0.130 

 

F-statistic 1.06 Prop. F (12,103) 0.401 

Obs*R-squared 12.704 Prop. Chi-square (2) 0.391 

3.3.5. Runs Test for Serial Correlation 

Another approach to testing for serial correlation in the 

residuals is to use the runs test [46]. The runs test, or Wald–

Wolfowitz test, is a simple non-parametric test for randomness. 

The high p-value of the runs test [0.795] confirms that there is 

no serial correlation between the residuals. 

3.3.6. Normality Tests 

The Kolmogorov-Smirnov (K-S) test is a non-

parametric test of data fitting to a theoretical distribution 
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using the maximum deviation (Dmax) between the two 

functions of cumulative distribution [47]. The value of the 

maximum deviation Dmax is compared with the critical 

value Dcrt. If the maximum deviation is greater than the 

critical value the assumption of normality is rejected. The 

test is used to examine the normality of the residuals 

series. It is observed that the maximum deviation Dmax is 

less than the critical value Dcrt at 5% significance level as 

shown in Table 6. The test shows that the residuals are 

normally distributed since the p-value > 0.050 [p-

value=0.195]. In addition to Kolmogorov-Smirnov test, 

the histogram of the residuals, Figure 7, shows that the 

data distribution is fairly normal. 

3.3.7. Homoscedasticity Tests 

Homoscedasticity is the term used to define that the 

variance of the residual in each observation is constant. 

For the diagnostic checking of residuals in terms of 

homoscedasticity, Breusch-Pagan-Godfrey, Harvey, 

Glejser, and ARCH LM tests are commonly used for time 

series data. In this research, ARCH LM test, which is a 

Lagrange multiplier (LM) test, is used for autoregressive 

conditional heteroscedasticity (ARCH) in the residuals 

[48]. Test statistics value of ARCH test for the 

homoscedasticity of the residuals is presented in Table 7. 

The p-value > 0.050, this indicates that the residual 

variance is constant. Lastly, the selected SARIMA 

(1,0,1)×(0,1,1)12 model seems to be very closely aligned 

with the actual data as shown in Figure 8. 

 

Figure 7. Histogram of the Residuals. 

Table 6. K-S Test Calculation for Residuals. 

One-Sample Kolmogorov-Smirnov Test 

Maximum deviation (Dmax) 0.099 
Critical value (Dcrt) 0.125 

Table 7. ARCH LM test. 

F-statistic 0.171 Prop. F (2,114) 0.843 

Obs*R-squared 0.349 Prop. Chi-square (2) 0.840 

 

Figure 8. Comparison of actual data and SARIMA model [2000–2010]. 

Table 8. Forecasting accuracy statistics. 

Statistic measures Value 

RMSE 8.660 

MAE 5.473 

R2 0.869 

NSE 0.853 

TIC 0.048 

 

Figure 9. Calibration results of SARIMA (1,0,1)×(0,1,1)12 model. 

 

Figure 10. Forecasting of monthly streamflow using SARIMA 

(1,0,1)×(0,1,1)12 model, [2011–2013]. 

3.4. Forecasting of Monthly Flow 

The selected model was tested for its validity to forecast 

36 observations obtained for the years 2011 to 2013 for the 

White Nile River. 
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If the selected model has to perform well in forecasting 

phase, the forecast error will be very small. The accuracy of 

forecasts was examined using the root mean square error 

(RMSE), the mean absolute error (MAE), the coefficient of 

determination (R
2
), Nash-Sutcliffe efficiency criteria (NSE) 

and Theil inequality coefficient (TIC). Table 8 shows the 

statistic measures. It is observed that the model has lower 

values of MAE and RMSE. The coefficient of determination 

value of 0.869, Figure 9, and Nash-Sutcliffe efficiency 

criteria (NSE) value of 85.3% showed the very good 

performance of the model. Theil inequality coefficient turns 

out to be 0.048, which indicates a perfect fit. The observed 

flow was found to be closely aligned to the forecasted values 

as shown in Figure 10. Eventually, this proves that the 

SARIMA (1,0,1)×(0,1,1)12 model identified previously is 

sufficient. 

3.5. Discussion 

SARIMA models have been used to monthly flow of 

White Nile River. The AIC and HQ criterion suggest that a 

SARIMA (1,0,1)×(0,1,1)12 should be fit for the monthly flow. 

Based on the Box-Jenkins methodology, the residuals should 

behave like Gaussian white noise which is appearing random, 

homoscedastic and normal process. Randomness analysis of 

the residuals was tested by the Ljung-Box, Durbin-Watson 

Statistic, Breusch-Godfrey, and runs tests. The 

homoscedasticity of residuals was examined by the ARCH 

LM test. To prove whether the residuals are normally 

distributed, Kolmogorov-Smirnov test was applied. The 

selected SARIMA model has fulfilled all the above tests. 

Further, five measures for judging forecast accuracy of the 

selected model have been used. In practice, it is better to use 

more than one performance criteria. This will assist to obtain 

a good information about the amount and magnitude of the 

overall forecast error. The model has passed all tests, and the 

results reveal the ability of SARIMA to provide accurate 

forecast. Finally, the appropriate selection of the model 

orders is extremely important for successful forecasting. 

4. Conclusion 

Monthly flow forecasting is an important component in 

planning and management of water resources in Sudan. For 

example, the operation of Jabal al Awliya dam in the White 

Nile River is completely depending on the measured flow at 

Malakal station. This paper applied the seasonal 

autoregressive integrated moving average (SARIMA) models 

in forecasting monthly flow at the Malakal station on the 

White Nile River, South Sudan. 

The best model that fits the criteria and meets the 

requirements is SARIMA (1,0,1)×(0,1,1)12. The model was 

applied to forecast three years monthly flow values. By 

analyzing the forecasted values, it was found that use of 

SARIMA model for forecasting streamflow is marvelously 

good. Consequently, the developed model will help water 

resources directors for management of the White Nile, and 

optimal operation of Jabal al Awliya dam. Water resources 

experts and decision makers are expected to find this model 

useful in the design of water policies in both country Sudan 

and South Sudan. 

Nomenclature 

ACF Autocorrelation Function 

ADF Augmented Dickey Fuller 

AIC Akaike Information Criterion 

ARIMA Autoregressive Integrated Moving Average 

ARMA Autoregressive and Moving Average 

ARCH Autoregressive Conditional Heteroscedasticity 

AR (p) Autoregressive parameter of order (p) 

DF Dickey Fuller 

DW Durbin-Watson 

HQ Hannan-Quinn Criterion 

K-S Kolmogorov-Smirnov 

LM Lagrange multiplier test 

MAE Mean Absolute Error 

MA (q) Moving average parameter of order (q) 

NBI Nile Basin Initiative 

NSE Nash–Sutcliffe efficiency 

PACF Partial Autocorrelation Function 

PP Phillips-Perron test 

RACF Residuals Autocorrelation Function 

RPACF Residuals Partial Autocorrelation Function 

RMSE Root Mean Squared Error 

R
2
 Coefficient of determination 

SARIMA 
Seasonal Autoregressive Integrated Moving 

Average 

TIC Theil Inequality Coefficient 
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