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Abstract: Backbreak in the mining industry presents a considerable challenge, impacting both safety and operational 

efficiency. Accurate prediction of backbreak is therefore a critical endeavour. This study rigorously evaluates four advanced 

machine learning (ML) techniques—Lagrangian Support Vector Machine (LSVM), Radial Basis Function Neural Network 

(RBFNN), Gaussian Process Regression (GPR), and Extreme Gradient Boosting (XGBoost)—to ascertain the most effective 

method for backbreak prediction. Utilising a comprehensive dataset of 60 blasting rounds from the Damang Goldfields Open 

Pit Mine and prior to the analysis, this dataset underwent a thorough preprocessing phase. The efficacy of each model is 

assessed using a suite of metrics, including correlation coefficient (r), coefficient of determination (R
2
), mean squared error 

(MSE), root mean squared error (RMSE), and mean absolute error (MAE). The performance of the models is quantitatively 

compared, revealing XGBoost as the superior predictor in this context, characterised by an r of 0.9788, an R
2
 of 0.9565, an 

MSE of 0.1714, an RMSE of 0.4139, and an MAE of 0.2819. The findings of this study underscore the potential of XGBoost 

as a robust tool for backbreak prediction, offering mining companies a viable solution to enhance safety protocols and mitigate 

financial losses related to backbreak incidents. This research contributes significantly to the field of predictive analytics in 

mining, providing a comprehensive comparative analysis of various ML techniques for backbreak prediction. 

Keywords: Backbreak, Blasting, Machine Learning (ML), Cosine Amplitude Method (CAM),  

Simple Linear Regression (SLR) 

 

1. Introduction 

Backbreak is a prevalent issue in rock blasting operations 

that can result in safety risks and decreased production [1]. In 

the mining industry, "backbreak" refers to shattered rocks 

extending behind the last row of holes or past the planned 

excavation limit in a blast pattern [2]. Bhandari [3] asserts 

that the breakage and fractures are mostly caused by the 

incorrect use of explosive energy in blastholes. When an 

explosive charge within a blasthole detonates, high-pressure 

shockwaves, heat, and gases are generated rapidly [4]. The 

walls of blastholes are subjected to the generated gas 

pressure, which exerts significant stress on the surrounding 

rock mass (media). Under these conditions, rock breaking 

occurs when the free surface is sufficiently near the blasthole. 

If the energy created during blasting is not contained, 

undesirable traits like backbreak become evident [5]. A study 

conducted by Konya et al. [6] identified that the key factors 

contributing to backbreak include an excessive burden, 

extremely rigid benches, deep stemming on stiff benches and 

an inappropriate timing delay. According to Gates et al. [7], 

the main causes of backbreak are insufficient delay time and 

increased blasting rows. This can result in various effects, 

including equipment dropping, inadequate fragmentation, 

unstable mine walls and decreased drilling effectiveness [8]. 

Accurate prediction of these effects is essential for their 
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mitigation and the development of open-pit mining in a safe 

and sustainable manner. 

Numerous studies have been conducted to determine the 

elements that influence the severity of backbreak. These 

elements can be broadly classified into controllable and 

uncontrolled factors. While the uncontrollable factors such 

geological discontinuities are intrinsic and cannot be changed, 

the controllable factors relate to the parameters that can be 

altered. Some controlled parameters are specific charge, 

blasthole diameter, blasthole depth, burden, bench height, 

spacing and stemming whereas rock mass properties and 

structural terrain are uncontrollable parameter. In the past, 

empirical models such as Holmberg Persson, Langefors–

Kihlstrom, General Predictor and Gupta [9-11] for blast 

pattern design were created to achieve objectives such as 

appropriate fragmentation, minimising blast-induced ground 

vibration, decreasing backbreak, reducing flyrock throw 

distance and reducing boulders. However, using such 

algorithms to predict backbreak is difficult. Additionally, the 

empirical models only consider a portion of the key blasting 

operating factors. There are several associated parameters 

with unclear interrelations, which adds to the complexity of 

such challenges. The effectiveness of earlier proposed 

empirical models of backbreak is poor [12]. Unquestionably, 

this has contributed to the creation of several predictions. 

Recently, new predictive models have been developed by 

numerous researchers for predicting backbreak. The methods 

encompass a range of techniques such as adaptive neuro-

fuzzy inference system [13], hybrid artificial neural network 

and bee colony algorithm [14], rock engineering system, 

stochastic modelling [15], fuzzy set theory, support vector 

machine [16], artificial neural networks and genetic 

programming [17]. Each of these predictive algorithms has 

different benefits and drawbacks. 

The objective of this research is to develop and compare 

the effectiveness of four distinct machine learning (ML) 

models for predicting backbreak in rock blasting: Lagrangian 

Support Vector Machines (LSVM), Radial Basis Function 

Neural Networks (RBFNN), Gaussian Process Regression 

(GPR) and Extreme Gradient Boosting (XGBoost). These 

models have emerged as a promising alternative for 

predicting backbreak. These simulations have shown 

excellent potential for successfully forecasting backbreak 

during rock blasting, given their outstanding performance 

compared to other newly proposed predictive models by 

various researchers such as Yu et al. [16], Nabavi et al. [18] 

and Arthur et al. [19]. Each model will be assessed to 

determine its effectiveness and appropriateness for real-world 

application. The development of an algorithm for each model 

will be required for this evaluation. The findings of this study 

will give helpful information about which of the four models 

is highly recommended for accurate backbreak prediction. 

Thus, using LSVM, RBFNN, GPR and XGBoost models for 

predicting backbreak in rock blasting operations is 

anticipated to provide significant benefits in effectiveness, 

safety, and environmental conservation and aid in developing 

more efficient blasting methodologies. 

2. Study Area and Data Description 

2.1. Study Area Description 

Damang mine, a large-scale open-pit gold mining site, is 

situated in the Western Region of Ghana, specifically within 

the prolific Tarkwaian gold belt known for its abundance of 

gold resources. Located approximately 10 km north of the 

key town of Tarkwa, the mine falls within the gold-rich 

Paleoproterozoic Birimian Supergroup on the West African 

Craton. It is a registered company in Ghana with a land area 

of about 8,111 hectares, including five Prospecting Licenses 

and two Mining Leases. The mine area, characterised by its 

undulating hills and valleys, ranges from 100 to 500 m above 

sea level. Gold mineralisation within the mine is associated 

with shear zones and quartz veins intersecting the region's 

prevalent metavolcanic and metasedimentary rocks, namely 

mafic volcanic rocks and granitoids. To reveal the gold-

bearing areas, soil and rock are carefully removed before the 

valuable metal is extracted from the ore through drilling, 

blasting, loading, hauling, crushing, grinding, and chemical 

extraction processes. The Damang mine processing facility 

handles approximately 5.2 million tonnes of ore annually, 

with around 5 % oxide and 95 % fresh ore. The introduction 

of a secondary crushing plant in April 2010 further enhanced 

the efficiency of the extraction process. Ore is recovered 

using a combination of open-pit mining operations and 

existing surface stockpiles, which resulted in a total 

processed feed of 2.5 million tonnes in the six months ending 

December 31, 2010, resulting in an output of 117,000 ounces 

of gold with a grade of 1.46 g/t. In line with high 

environmental and safety regulations, the mine is committed 

to sustainable mining practices, including reducing soil 

erosion, managing waste rock and tailings, reducing dust 

emissions, and performing reclamation and restoration 

programmes to restore damaged land areas post-mining to 

profitable use. 

 

Figure 1. Location of Damang Mine. 



 American Journal of Science, Engineering and Technology 2024; 9(1): 1-13 3 

 

2.2. Dataset Description 

The aim of this study is to create intelligent models using 

LSVM, RBNFF, GPR and XGBoost to predict backbreak at 

Damang mine and determine the most effective predictor. To 

accomplish this objective, a dataset comprising 60 blasting 

rounds conducted at Damang mine was compiled. The input 

parameters used for predicting backbreak include specific 

charge [powder factor] (P), geometric stiffness ratio (G), 

stemming height (T), burden (B), and spacing (S). These values 

were obtained from the blasting designs, and other parameters 

such as the number of blast holes, charge in one hole 

[cooperating charge] in kg, depth of the blasthole (m) and 

specific charge [powder factor] were calculated. All of these 

factors were recorded and compiled in Table 1 as the main 

controllable blasting factors. In partitioning the data for training 

and testing, cognisance was taken of the fact that to generate 

accurate predictions, machine learning (ML) technique requires 

a sufficient amount of training data [20]. However, when there is 

an excess of training data, the model may overfit, leading to 

poor performance when dealing with new data [21]. 

One important point to note is that the method used to 

divide the dataset into training and validating sets, either 

cross-validation or the percentage split approach can have 

an impact on the model’s performance [22]. If the training 

set is too limited, the model may not have adequate data to 

learn from and may perform inadequately [23]. Conversely, 

if the testing set is too small, it may not be a reliable 

representation of the entire dataset, and the model's 

performance may not be assessed precisely. While there is 

no consensus on the optimal ratio for dividing the data, the 

percentage split approach is a commonly used and 

successful method for machine learning (ML) modelling 

[24]. As a result, this technique was chosen for the current 

data partitioning. The training set included 42 data points, 

representing 70 % of the entire data, and was utilised to 

create and train various models. In contrast, the testing set 

consisted of 18 data points, accounting for 30 % of the data, 

and was used to evaluate the models' performance with new 

and unseen data. 

Table 1. A Statistical Analysis of the Parameters Collected from the Damang 

Mine. 

Parameters Unit Min Max Mean Std Dev 

Powder factor (P) kg/�� 0.15 0.90 0.457 0.208 

Geometric stiffness (K) -- 2.40 6.93 3.311 0.791 

Stemming height (T) m 1.80 4.50 3.599 0.679 

Spacing (S) m 2.74 6.00 4.639 0.696 

Burden (B) m 2.00 6.50 3.617 0.794 

Backbreak m 1.00 10.0 4.124 2.091 

3. Methods Used 

The machine learning (ML) techniques employed to 

develop models are discussed in this section. 

3.1. Lagrangian Support Vector Machine (LSVM) 

According to research by Behzad et al. [25] and Vapnik 

[26], the Support Vector Machine (SVM) was developed in 

the 1990s as a practical solution for classification and 

regression applications. Because of its ability to efficiently 

learn from a minimal set of parameters, it has been 

successfully applied in many different fields such as stock 

price forecasting [27], time series analysis [27], and Flyrock 

prediction [28]. SVMs have shown effectiveness in 

regression tasks as well as classification tasks by reducing 

structural risk, as noted in studies by Mukherjee et al. [29] 

and Jeng et al. [30]. In order to approximate the value of y(x) 

based on the supplied data, it uses a method that comprises 

determining a function that is similar to f(x) as shown in 

Equation (1). 

The given data set (�� , ��) …, (�� , ��) belongs to X ⊆ R
n 

and Y⊆ R                            (1) 

The function is predicted using support vectors, a subset of 

training data. The SVR method also generates a sparse 

characteristic using ε -insensitive loss function [31]. 

Mathematically, the definition, this function is is presented in 

Equation (2). 

|19 − �
��|� = �	 0		��	|���
����||� − �
��| − �	��ℎ�� �!�     (2) 

In the aforementioned equation, the predicted value of y is 

denoted by the function f(x), and any errors less than the ε - 

limit are not penalised. The regression method comprises 

using a linear function approximation, and the input vector x 

is stated as follows [32, 33]: 

�
�� = (w.x) + b where w, x ∈ X ⊆ R
n
, b ∈ R      (3) 

In this context, the bracket notation is used to represent the 

inner product of two vectors within a Hilbert space, which is 

a unique type of vector space. This space is characterized by 

an inner product that specifies a distance function, thus 

making the space a complete metric space [34]. The 

regulated risk functional (Rreg) has to be defined in order to 

assess f(x). Equation (4) presents a description of Rreg: 

Rreg #�$ =�% ‖ ‖% + CRemp #�$ where R�emp #�$= 
��∑ |�) −�)*��
�)�| 	�                                  (4) 

The following convex and limited quadratic optimisation 

issue can be solved in a manner similar to reducing the value 

of Equation (4): 

L (w,+, + ,� = 
�% ‖ ‖% + c∑ 
+) + +.	�/)*�           (5) 

Subject to 0 �) − 12 −3 ≤ + + �51� + 3 − �) < +. + �+) , +�7. 	89:	�) ≥ 0  

In Equation (5), the parameter C = “capacity” is employed 

to ensure the margin ε is maximised while minimising the 

classification error +. A larger value of C suggests that greater 

weight is placed on misclassifications in the training set, 

which lowers the machine's capacity for generalisation. Low 
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generalisation ability can cause a machine to perform well on 

the training set but poorly on entirely new, untested data. 

When the machine overfits the training data, poor 

generalisation may result, especially if the training data 

contains unusual and irregular patterns. On the other hand, 

choosing a smaller value of C lessens the chance that the 

Support Vector Machine (SVM) may become overfit to the 

training set of data. Equation (5) also states that any error 

smaller than ε does not need a nonzero value for either +) or +.)  because it does not contribute to the objective function 

[35]. 

By allowing parameters C and ε to have non-zero values, 

the optimal equation for the hyperplane can be obtained by 

maximising the following equations through the introduction 

of Lagrange multipliers (=, and =.): 
L (=, =.�=�%> 
? 
/)*�

/
)*� 	= − =.��).�)
8) − 8).� +∑ 	/)*� @
8) − 8).��) − 
8) + 8).��A           (6) 

Subject to 0 ≤ 
8) − 8).� ≤ B 
In order to improve generalisation in the non-linear 

condition, data points are mapped onto feature space: 

�)�C → E
�)�E@�CA                         (7) 

Exact value of the function E
�)�, is not required since it 

can be determined by choosing an appropriate kernel 

function, such that k (�)�C� = E
�)�E@�CA. Even in cases 

where the original input space is nonlinear, it is still 

possible to separate data in Hilbert space by selecting the 

correct kernel function. In contrast to the input space, where 

a hyper-plane is not used to split the data for n-parity, this 

allows the feature space to separate the data using an 

appropriate kernel [36]. For regression analysis, some of the 

frequently used kernels are polynomial, sigmoid kernel, 

radial basis function (Gaussian), laplace RBF kernel and 

Anove RBF kernels. 

According to the definition of the kernel, the nonlinear 

regression estimation problem of SVR might take the 

following forms: 

�) => ? 
/C*�
/
)*C 	= − 8).�E
�)�1E@�CA + 3 =

> 	? 
/C*�
/
)*C 	= − 8).� K (�).�C) + b         (8) 

Equation (5)'s limitations change to +) = 0 if 0 < 8)  < C 

and +.) = 0 if 0 < 8). < C, which can be used to find b [37]. 

It is well known that a certain collection of parameters, 

including the capacity parameter C, the value of the -

insensitive loss function, the kernel k, and associated 

parameters, have a significant role in the effectiveness of 

SVM. During the training phase, the parameters C and ε were 

given the values 1 and 0.001, respectively. Parameter C 

functions as a regularisation parameter that governs the 

balance between maximum generalisation and minimum 

training error. It would be difficult to adequately fit the 

training data if C was set to an extremely small value. 

When selecting the value of the loss function (ε) for SVM 

training, it is crucial to consider the possibility of various 

types of noise that may be present in the database. The kernel 

function is another important parameter that needs to be 

accurately chosen. Studies have shown that the Polynomial 

kernel function performs better than other kinds of kernel 

functions [38, 39]. Encouragingly, the coefficient of 

determination the model significantly increased from 0.7024 

to 0.8928 when the polynomial kernel was used instead of 

the linear kernel. The Polynomial kernel function is 

represented by the following equation: 

F@2) , 2CA = 
2)1 , 2C + 1�G                       (9) 

3.2. Radial Basis Function Neural Network (RBFNN) 

A Radial Basis Function Neural Network (RBFNN), a 

type of multi-layer feedforward artificial neural network, 

leverages radial basis functions as its activation 

mechanisms [40]. Such networks are highly effective for 

tackling both regression and classification tasks [41]. 

Initially developed within a statistical framework and 

rooted in function approximation theory, RBFNNs have 

since been widely applied in machine learning and pattern 

recognition [42]. The structure of RBFNNs comprises three 

layers: an input layer, a hidden layer, and an output layer 

[43]. The input layer's neurons straightforwardly relay the 

input features to the hidden layer without any alteration 

[44]. The network's architecture includes a single hidden 

layer, where each neuron employs a Radial Basis Function, 

often a Gaussian function, as its activation function (as 

indicated in equation 10). Each hidden layer neuron acts as 

a "prototype", synonymous with the center of the RBF. The 

RBF's output is determined by the distance from the input 

to this prototype [45]. Lastly, the output layer performs a 

weighted summation of the inputs it gets from the hidden 

layer, suggestive of a linear regression operation [46]. RBF 

networks are often used in function approximation, time 

series prediction, control, and signal processing, among 

other applications [47]. The Gaussian function given by 

Park et al. [48]: 

E@H� − BCHA = ��I J− �%KL H� − BCH%M         (10) 

Where H� − BCH is the Euclidean distance between �  and BC, � is the input vector, BC is the center vector and NC  is the 

width (expansion) of the Gaussian function. The output of the 

RBFNN, represented by y, can be computed using the 

formula given by: 

� = ? E@H� − BCHA )CC)*�                       (11) 

Where j is the number of hidden neurons, � is the input 

vector, BC are the centres associated with the hidden neurons,  )C  are the weights associated with the hidden neurons, E is 

the radial basis function, typically a Gaussian function, and H� − BCH is the Euclidean distance from the input vector to 

the centre [49]. Figure 2 shows the RBFNN’s (radial basis 
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function neural network) structure. 

 

Figure 2. Network arrangement based on RBF. 

3.3. Gaussian Process Regression (GPR) 

A Gaussian process (GP) is a random process, 

characterized by variables indexed by time or space, and 

uniquely distinguished by the property that any finite subset 

of these variables adheres to a multivariate Gaussian 

distribution [50]. They have been utilized as an effective tool 

in machine learning, predominantly in the fields of regression 

and smu classification [19, 51]. Originally, Gaussian Process 

Regression (GPR) was employed in the forecasting of time 

series, first introduced by Wiener and Kolmogorov in the 

1940s. Subsequently, it gained substantial traction in the field 

of geostatistics [52], where it's recognized as kriging. A 

Gaussian Process (GP), represented as t (x), is a stochastic 

process that is completely defined by a covariance function, 

also known as a kernel, indicated as k (x, x′), and a mean 

function, signified as m (x) [50, 53, 54]. Here, Eqns. (12) and 

(13) represent these functions: 

�
�� = O@�
��A                         (12) 

Cov@�
��A,�
�.� = F
�, �′; R� � O S@�
�� � �
��A@�
�.� �
�
�.�AT                          (13) 

where R stands for the collection of hyperparameters. Thus, 

in Eqn. (14), a Gaussian process is written as follows: 

�
��~VW@�
��, F
�, �.�A              (14) 

where the gaussian process is denoted by GP. This indicates 

that the function �	
��  has a Gaussian distribution with a 

mean of �	
�� and a correlation function of F
�, �.�. 
Gaussian Process for Regression 

Establishing a model that illustrates the link between a 

response variable, y, and a group of predictor variables, �), is 

the goal of every regression work. Any regression function, t 

(x), may be used to link a response variable, y, by using an 

additive independent Gaussian noise,	�, which generalize the 

noise in the data. This connection is demonstrated by the 

equation below: 

� � �
�� - �                              (15) 

The Gaussian process represented by Eqn (14) is modified 

to Eqn (16) with the presence of noise, ε, which has an 

average of zero and a variance of NX%, denoted as ε~N (0,	NX%�. 
�
��~VW
�
��, F
�, �.� - NX%Y�            (16) 

where the identity matrix is Y. According to Eq. (17), which 

is based on the marginalization property of generalized 

projections (GPs) and the additive nature of noise, the joint 

distribution of the test outputs �∗  at test points X and the 

training output y at locations 2∗  is supplied. According to 

[55]. 

[��∗\ ~] �^�
2��
2∗� _ ^F
2, 2 - NX%Y� 	F
2, 2∗�	F
2∗, 2� 	F
2∗, 2∗�_`  (17) 

To determine the predictive distribution, the combined 

Gaussian prior distribution can be conditioned on X, y, and 2∗ as shown in the provided equation: 

W
�∗|�, �, ��~]@�a∗, b8�
�∗�A                (18) 

The equation shown above includes �a∗  (Eq.19), which 

denotes the predictive mean, and var (y∗) (Eq. 20), which 

represents the predictive variance. These equations were 

introduced by Li et al. [55]. 

�a∗ � �
�∗�	+ #F
2∗, 2�c
2, 2� - NX%Y$��(y-m(X))  (19) 

b8�
�∗� � 	F
2∗, 2∗�[c
2, 2� - NX%Y$��	F
2, 2∗�  (20) 

Covariance function 

It is beneficial to describe how two or more random 

variables change simultaneously, or to assess the connection 

between the variables, when they are represented on a 

probability space [56]. The covariance is a frequently used 

indicator of the correlation between two random variables 

[57]. A Gaussian process regression model's core component 

is the correlation function, and choosing the right covariance 

function is essential to defining the sample function that will 

be represented [58]. Its goal values are probably comparable 

when input points are connected nearby. Consequently, a 

goal value for a test point close to a training point should also 

be close to the training point. The constant, linear, Gaussian 

noise, Ornstein-Uhlenbeck, squared exponential, gamma 

exponential, Matérn Class, periodic, rational quadratic, and 

others are examples of frequent covariance functions that 

may be found in the literature. The squared exponential 

function is frequently used and stands out in the literature 

[59]. 

Training a Gaussian process regression model 

The behaviour of the GPR model is governed by the mean 

function and covariance (kernel) function values, which are 

the hyperparameters of the Gaussian process. All of the 

hyperparameters related to the mean and covariance 

functions must be learnt in order to train and build a GPR 

model. Methods like sampling or optimisation can be used to 

accomplish this. However, it is common to use a strategy of 

maximising the log marginal probability (Eqn. 21), as 

suggested by Liu et al. [60]: 
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d�e	p
y|X, θ� = − �% �1
F + NX%Y���y-
�% d�e	|F - NX%Y| �X% d�e2k                (21) 

where R is a vector made up of all the hyperparameters and �1  is the inversion of the y vector. 

Moore et al. [61] suggest that the conjugate gradient 

technique is a potent optimisation algorithm that is gradient-

based and can be employed to maximise the log marginal 

likelihood. 

Model Development 

The pre-processing stage of the model building involved 

normalising the training and testing data sets. The purpose 

of normalisation is to ensure that the variability is 

consistent and minimise the impact of variables with high 

variance on the model's predicted outcomes. Since the data 

sets contain various ranges of values and physical units, 

Equation. (22) [62] was used to normalise the data into the 

range of [1, 1]: 

	l) � l�)X - 
mnop�mn7q�×
/7�/n7q�/nop�/n7q            (22) 

where l�)X and l�s�  are set to -1 and 1, respectively,	l) is 

the normalised data, ]) is the measured blast data, and ]�s�  

and ]�)X  are the maximum and minimum values of the 

measured blast data. 

In this equation, l�)X  and l�s�  correspond to -1 and 1, 

respectively. 	l) represents the normalised data, whereas ]) 
represents the measured blast data. ]�s�  and ]�)X  denote 

the highest and lowest values of the measured blast data. 

3.4. Extreme Gradient Boosting (XGBoost) 

XGBoost, short for eXtreme Gradient Boosting, is an 

enhanced and scalable rendition of the gradient boosting 

technique. It has been specifically developed to enhance 

efficiency, computational speed, and overall model 

performance [63]. XGBoost builds an incremental extension 

of the objective function by the reduction of a loss function, 

much as gradient boosting [64]. But XGBoost differs since it 

only uses decision trees as its fundamental classifiers [65]. 

To regulate the complexity of these trees, a modified version 

of the loss function is employed [66]. The objective function 

in XGBoost is the sum of a loss function and a regularisation 

term, as shown in equation 23. 

ℒ
u� � ∑ d
�v) , ���) + ∑ w
�x�x 	            (23) 

where ℒ
u�  is the objective function, d
�v) , ���  is the loss 

function and w
�x� is the regularisation. The regularisation 

term helps to control the complexity of the model, which 

helps to prevent overfitting [67]. In XGBoost, the 

regularisation term is given by Equation (24). 

w
�� = yz + �% {‖ ‖%                         (24) 

In the above Equation (24), T represents the number of 

leaves in a tree, and w represents the output scores associated 

with those leaves. By incorporating this loss function into the 

split criterion of decision trees, a pre-pruning strategy can be 

implemented [18]. Increasing the value of γ leads to the 

formation of simpler trees [66]. Essentially, γ determines the 

minimum amount of loss reduction required to justify 

splitting an internal node [68]. 

4. Results and Discussion 

This research assessed the effectiveness of four distinct 

machine learning (ML) methods namely: Lagrangian Support 

Vector Machines (LSVM), Radial Basis Function Neural 

Networks (RBFNN), Gaussian Process Regression (GPR) 

and Extreme Gradient Boosting (XGBoost) in forecasting 

backbreak at Damang mine. The assessment relied on five 

performance metrics, namely the correlation coefficient (r), 

coefficient of determination 
|%), mean squared error (MSE), 

root mean squared error (RMSE) and mean absolute error 

(MAE). The equations for computing these metrics are as 

follows: 

� = }1 − ? 
�7��v7�~q7��
> �7~q
7�� ��
�q> �v7~�q

7��
                 (25) 

|% = ����q 
�7��a7�@�v7��va�A
}> 
�7��a7��7��qq

7�� @�v7��va�A
                       (26) 

l�O = ? 
�7��v7�~q7�� X                              (27) 

|l�O = �? 
�7��v7�~q7�� X                          (28) 

l�O = �X> ������v7�7 �X
)*�                          (29) 

In this equation, n represents the total number of 

samples utilised for training or testing the model, while �)  
and �v)  denote the measured and predicted values, 

correspondingly. 

Considering the results, the XGBoost model exhibited 

the highest coefficient of determination, suggesting a 

greater potential to predict backbreak than the other models. 

Further demonstrating its outstanding prediction 

performance, the XGBoost model achieved the lowest error 

among all the models, implying its ability to accurately 

estimate backbreak in mining operations. Therefore, 

XGBoost was found to be the best predictor in this 

investigation based on the assessment measures. It is worth 

noting that the performance of the models can be affected 

by the quality and quantity of the data used for training and 

testing [69-71]. Additionally, while selecting the most 

appropriate model for a particular application, it is crucial 

to take into account additional parameters including the 

computational complexity and the time needed for training 

and testing [72, 73]. Table 2 presents the performance 

metrics of different models. 
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Table 2. Model performance metrics. 

Model r R2 MSE RMSE MAE 

LSVM 0.9472 0.8928 0.4222 0.6498 0.4485 

RBFNN 0.9632 0.9257 0.3114 0.5581 0.4760 

GPR 0.8926 0.7144 0.9234 0.9610 0.5785 

XGBoost 0.9788 0.9565 0.1714 0.4139 0.2819 

5. Validation, Performance and 

Comparison of Models 

This section introduces a Taylor diagram, scatter plot, and 

bar chart. These visual aids emphasize the performance of 

predictive models during testing. Invented by Karl E. Taylor 

in 1994, the Taylor diagram is a handy tool that quantifies the 

correlation between models and a reference point, utilizing 

the Pearson correlation coefficient (r), the root-mean-square 

error (RMSE), and the standard deviation [74]. On the Taylor 

diagram, each model is represented as a single point on a two 

dimensional (2-D) plot, and the closeness of this point to the 

reference point signifies an optimal model [75]. Figure 3 

displays the Taylor diagram specific to the models developed 

for the testing datasets in this research. According to this 

figure, the XGBoost model outperforms the other predictive 

models in backbreak predictions. 

 

Figure 3. A Taylor Diagram visualizing the comparative performance of various predictive models. 

 

Figure 4. Measured versus Predicted Backbreak for LSVM. 

 

Figure 5. Measured versus Predicted Backbreak for RBFNN. 
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Figure 1. Measured versus Predicted Backbreak for GPR. 

 

Figure 7. Measured versus Predicted Backbreak for XGBoost. 

Figure 4 to 7 present the scatter plot of various predicted 

backbreak of various models against measured backbreak. 

Evaluating predictive models can be achieved by analyzing 

the distribution of predicted values. Figure 8 presents bar 

charts that illustrate the performance of each model, as 

evaluated by the R-squared metric. 

 

Figure 8. Comparison of each model with coefficient of determination. 

Sensitivity Analysis 

Sensitivity analysis is a widely recognised method used 

to explore the extent to which a specific variable in a model 

depends on the various factors present within that model 

[76]. Performing sensitivity analysis on a comprehensive 

model can aid in identifying potential areas of concern that 

may result in strong dependencies between outputs and 

specific parameters within a dataset [77, 78]. To assess the 

strength of the relation between backbreak and blasting 

parameters, the analysis focuses on examining the main 

effects using simple linear regression (SLR) and the Cosine 

amplitude method (CAM) of sensitivity analysis. Saeed et 

al. [79] initially introduced the CAM method to identify the 

input parameters that have the highest influence on the 

output parameters. To carry out this technique, a data array 

X was constructed using all available data pairs in the 

following manner: 

2 � ���, �%, … , �X`                      (30) 

In equation (31), each element �) is a vector of length m, 

constituting the array X. 

�) � ��)�, �)% , … , �)�`                    (31) 

In this paper, the model inputs �)  correspond to specific 

charge [powder factor] (P), geometric stiffness ratio (G), 

stemming height (T), burden (B), and spacing (S), 

respectively. The model outputs �C  represent the backbreak. 

The degree of correlation (�)C� between the model inputs �) 
and model outputs �C  is determined by equation (32). The 

( �)C�  values range from zero to one. Higher ( �)C�  values 

indicated a greater influence of the input parameter on the 

output parameter. 

�)C � ��
2) , 2C� � �> �7��L�n
��� �

}
> �7�~n
��� �
> �L�~n

��� �
	�, � � 1, 2, . . . , 9 (32) 

Figures 9 to 14 presents the outcomes derived from the 

application of simple linear regression. According to the results, 

powder factor emerged as the most influential parameter in this 

with a correlation coefficient of 0.8819, indicating its strong 

relationship with backbreak. On the other hand, the remaining 

parameters also have significant roles in influencing the severity 

of backbreak incidents. The findings suggest that as powder 

factor, spacing and stemming increase, the severity of backbreak 

tends to increase. Conversely, increasing the geometric stiffness 

ratio can help mitigate the occurrence of backbreak events. 

Figure 15 illustrates the findings from utilizing the Cosine 

Amplitude Method (CAM). This method's results echoed the 

linear regression outcomes, indicating that the powder factor, 

with a sensitivity value of ((�)C� ) = 0.9772, was the most 

sensitive parameter. It was followed by burden ((�)C�) = 0.9456), 

stemming ((�)C� ) = 0.9401), spacing ((�)C� ) = 0.9177) and 

geometric stiffness ((�)C�) = 0.8505), in that order, based on the 

conducted sensitivity analysis. The concordance between the 

findings from both methods suggests that these variables 
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consistently play pivotal roles in the models regardless of the 

analytical method applied. 

 

Figure 9. Correlation of Burden with Backbreak. 

 

Figure 10. Correlation of Spacing with Backbreak. 

 

Figure 11. Correlation of Stemming with Backbreak. 

 

Figure 12. Correlation of Powder Factor with Backbreak. 

 

Figure 13. Correlation of Geometric Stiffness with Backbreak. 
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Figure 14. Sensitivity Analysis for Backbreak using SLR. 

 

Figure 15. Sensitivity analysis on backbreak using CAM. 

6. Conclusion and Recommendation 

Backbreak is a major safety concern in open pit mines 

during blasting operations, and accurately predicting its 

severity is critical for success in both technical and economic 

aspects. However, predicting backbreak is a highly complex 

issue that depends on many factors, making it difficult to 

accurately predict using all relevant parameters. To address 

this challenge, this study explores the use of four distinct 

machine learning (ML) techniques: Lagrangian Support 

Vector Machines (LSVM), Radial Basis Function Neural 

Networks (RBFNN), Gaussian Process Regression (GPR) 

and Extreme Gradient Boosting (XGBoost) to determine the 

most effective predictor of backbreak. Using actual data 

gathered from 60 blast rounds at the Damang mine, the 

models were trained and validated. In conclusion, this study 

demonstrates the potential of machine learning (ML) 

techniques in predicting backbreak in mining operations. 

Based on the prediction outcomes, it can be inferred that all 

four models have exhibited satisfactory performance in 

predicting backbreak. However, XGBoost outperforms the 

other three models in terms of effectiveness. Therefore, the 

XGBoost is highly recommended for backbreak forecasting. 

Several recommendations for more research and 

applications may be made in light of the study's findings. The 

XGBoost and LSVM models, which have excellent correlation 

coefficients and relatively low errors, have done well in the 

prediction of backbreak. As a result, these models may be used 

in upcoming research and applications including backbreak 

prediction. Secondly, future research may still investigate the 

GPR model in greater depth despite its lower effectiveness in 

prediction compared to the other three models. For example, 

new hyperparameters may be used to tune the performance of 

the model or other features can be introduced to the dataset to 

improve the performance of the GPR model. Thirdly, more 
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research may be done to assess how well XGBoost, LSVM, 

RBFNN and GPR models perform in comparison to other 

regression models like linear regression, decision trees, and 

random forests. This research can aid in determining the best 

model for backbreak prediction in various settings. Lastly, 

these models may be integrated into a decision support system 

for mining operations backbreak prediction. Such devices can 

aid in blasting parameter optimisation and backbreak reduction, 

which can increase mining operations' productivity and safety. 
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